REPORT No. 253

FLOW AND DRAG FORMULAS FOR SIMPLE QUADRICS
By A. F. Zaum

PREFACE

In this text are given the pressure distribution and resistance found by theory and experi-
ment for simple quadrics fixed in an infinite uniform stream of practically incompressible fluid.
The experimental values pertain to air and some liquids, especially water; the theoretical refer
sometimes to perfect, again to viscid fluids. For the cases treated the concordance of theory
and measurement is so close as to make a résumé of results desirable. Incidentally formulas
for the velocity at all points of the flow field are given, some being new forms for ready use
derived in a previous paper and given in Tables I, III. A summary is given on page 536.

The computations and diagrams were made by Mr. F. A. Louden. The present text is a
slightly revised and extended form of Report No. 312, prepared by the writer for the Bureau of
Aeronautics in June, 1926, and by it released for publication by the National Advisory Com-
mittee for Aeronautics. A list of symbols follows the text.

PRESSURE AND PRESSURE DRAG

We assume the fluid, of constant density and unaffected by weight or viscosity, to have in
all the distant field a uniform velocity g, parallel to z; in the near field the resultant velocity g.
If now the distant pressure is everywhere p,, and the pressure at any point in the disturbed flow
18 7o+ p, the superstream pressure p is given by Bernouilli’s formula,

pipa=1-¢'/g/, (1)
where p, = pq,2/2, called the ""stop’’ or “stagnation’” or ““nose’’ pressure.
At any surface element the superpressure exerts the drag /" p dy dz, whose integral over
any zone' of the surface is the zonal pressure drag,
D= fpdydz (2)
Values of p, D are here derived for various solid forms and compared with those found by
experiment.
PRESSURE MEASUREMENTS
The measured pressures here plotted were obtained from some tests by Mr. R. H. Smith
and myself in the United States Navy 8-foot wind tunnel at 40 miles an hour. Very accurate
models of brass, or faced with brass, had numerous fine perforations, one at the nose, others
further aft, which could be joined in pairs to a manometer through fine tubing. Thus the
pressure difference between the nose and each after hole could be observed for any wind speed.
Then a fine tube with closed tip and static side holes was held along stream at many points
abreast of the model, to show the difference of pressure there and at the nose. Next the tube
was thrust right through the model, to find the static pressure before and behind it. The
method is too well known to require further description.

THE SPHERE

Assume as the fixed body a sphere, of radius a, in a uniform stream of inviscid liquid, as
shown in Table I. Then by that table the flow speeds at points on the axis z, ¥ and on the
surface are

g.= (1 —a/zx"q,, .= (1 +ad%/2y"q,, g:.=1.5¢, sin g, (3)
where 8 is the polar angle. Figure 1 shows plots of these equations.

1 A zone is a part of the surface hounded by two planes normal to go.  Usually one plane is assumed tangent to the surface at its upstream end.
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To graph p/p. in Figure 1, we subtract from the line y =1, first ¢,*/g,? to show the pressure
along x; then g,%/¢,* to portray the surface pressure. A similar procedure gives the superpressure
in the equatorial plane.

The little circles show the actual superpressures found with a 2-inch brass sphere in a tunnel
wind at 40 miles an hour. These agree well with the computed pressures except where or
near where the flow is naturally turbulent.

By (3) and (1), on the sphere’s surface p/p,=1—2.25 sin’; hence the zonal pressure drag
Sp2nydy is

D = ma’sin?0(1 — g sin%d)p,, 4)

for a nose cap whose polar angle is 8. With increase of 8, as in Figure 2, D/p, increases to a
maximum .698 a? for #=41°—50’ and p=0; then decreases to zero for §=70°—37’; then to its
minimum —.3927 a? for 8==/2; then continues aft of the equator symmetrical with its fore
part. Thus the drag is decidedly upstream on the front half and equally downstream on the
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F16. 1.—Velocity and pressure along axes and over surface of sphere; graphs indicate theoretical values:
circles indicate pressures measured at 40 miles per hour in 8-foot wind tunnel, United States Navy

rear half, having zero resultant. The little crosses, giving D/p, for the measured pressures,
show that the total pressure drag in air is downstream, and fairly large for a body so blunt as
the sphere. .

Figure 3 depicts the whole-drag coefficient 2 Cp =2D/x p a’q/, of a sphere, for the manifold
experimental conditions specified in the diagram, plotted against Reynolds Number R =2 geaa/v,
v being the kinematic viscosity. For 0.2< R < 200000, the data lie close to the line.

Cp=28R% + .48, (5)

an empirical formula devised by the writer as an approximation.
For .5<R<2 (5) fairly merges with Oseen’s formula

Cp=24R"144.5, (6)

and for R < .2 Stokes’ equation Cp=24/R is exactly verified. Both these formulas are theoretical.
Stokes treated only viscous resistance at small scale; Oscen added to Stokes' drag coefficient,
24/R, the term 4.5 due to inertia.

! From the drag D= Cpa 8, where Sis (he model’s frontal area, one derives the drag covilivient Co=Dips S,



FLOW AND DRAG FORMULAS FOR SIMPLE QUADRICS
Over an important R range Figure 3 shows Cp=.5, giving as the sphere’s whole drag
D=.5p.8, 7

where S=r a? is the frontal area. That is, the sphere’s drag equals half its nose pressure times
its frontal area. For R<.2 Stokes’ value, D=6r u a ¢. has been exactly verified experi-

mentally, as is well known.

Yy

&

9 & -

o5\,

'y "

3 v

[ L ox

L 3

3 1]

ol v

[ x

- —y L

%‘— E) IOQ :I
\ Q ~ .
? ®x B | _E‘ L
W 8 Sy

NS«

x

T T
1.5 2.0
Length in
inches

=15

Fi6. 2.—Pressure and pressure-drag on sphere. Graphs indicate
theoretical values; circles indicate pressure p/p. measured at
40 miles per hour; crosses indicate pressure-drag D/p., com-
puted from measured pressure

THE ROUND CYLINDER

Next assume an endless circular cylinder, of radius @, fixed transverse to the stream, as
indicated in Table I. By that table the flow speed at points on the axes z, ¥ and on the surface is

gx={(1—d"x?) ¢o, ¢y = (1 +2*/¥") o, 9:=2 ¢ sin 6, (8)

where 8 is the polar angle. Plots of (8) are shown in Figure 4.

Graphs of p/p., made as explained for the sphere, are also given there, together with experi-
mental values, marked by small circles, for an endless 2-inch cylinder in a tunnel wind at 40
miles an hour. The agreement is good for points well within the smooth-flow region.

On the surface p/p,=1—4 sin® 8. The integral 2 fy pdy gives, per unit length of
cylinder, the zonal pressure-drag formula, °

D/p,=2 asin 8- g a sin® 9. (9)

4248827 34
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Fi6. 4.—Velocity and pressures along axcs und over surface of endless cylinder; graphs Indicate theoretical values;
circles indicatc pressures measured at 40 miles per hour in 8-foot wind tunnel, United States Navy
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Fic 5.—Pressure and pressure-drag on endless
eylinder. Graphs indicate theoretical values;
circles indicate pressure p/p. measured at 49
miles per hour; crosses indicate pressure-drag
D{pa computed from measured pressure

Fi1G. 6.—Drag coefficient for an endless cylinder in steady transiation tbhrough & viscous fluid
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This is 0, 2a/3 (max.),0, — 2a/3, for §=0°, 30°,60°, 90°; and is symmetrical about the equatorial
planexz=0. In Figure 5, the little crosses give D/p, for the measured pressures, and show total
D/p,=2.33a.

Figure 6 delineates the drag coefficient O, plotted against R =2 ag,/», from Wieselsberger’s
(Reference 1) wind tunnel tests of nine endless cylinders held transverse to the steady flow.
The faired line is the graph of

Cp=94R"*+12, (10)

an empirical equation devised by the present writer.
For very low values of R, Lamb derives the formula

. 8
Co=2.002—log. R)R’ (an

whose graph in Figure 6 nearly merges with (10) at B=.3.

For 15000 < R < 200000, Figure 6 gives Cp=1.2; hence the drag per unit frontal area is
D=1.2p,, (12)

which is 2.4 times that for the sphere, given by (7).

THE ELLIPTIC CYLINDER

An endless elliptic cylinder held transverse to the stream, as shown in Table I, gives for
points on z, ¥ and on its surface,

g:=(1—n)gp, g, =(1+m)gy, g =(1+b/a)g, sin 6, (13)

where m, n are as in Table I. Amidships q,= (1 +b/a)g,=2q, for a=5, as given by (8). Graphs
of (13) are given in Figure 7.

To find a’, b’ for plotting (13), assume a’ and with it as radius strike about the focus an
arc cutting y. The cutting point is distant b’ from the origin. Otherwise, b= Ya’t—¢?, where
c¢?=a’—b*=const.

With a/b=4 one plots p/p, in Figure 7, as explained for the sphere. The circles give the
experimental p/p, for an endless 2-inch by 8-inch strut, at zero pitch and yaw, in a tunnel wind at
40 miles an hour. The theoretical and measured pressures agree nicely for all points before,
abreast, and well behind the cylinder.

Again, sin?8=a%?/(b* +c%?), if ¢*=a?—b%. Hence on the model

2,,2
P/pa=1-9lg" =1~ ‘;;:ﬁiy% ‘ (14)

This gives the zonal pressure drag, D=2fypdy, per unit length of cylinder, ot
o

[ 2 Yydy __ath ,(a+b)?
Dip,=2y 2(a+b)u_/ b‘+—62y——2_ 4b e y+2b 2

tan™' Cgﬁ- (15)
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whose graph, for a/b =4, appears in Figure 8. It rises from O at the nose to its maximum where
p=0, then falls to its minimum amidships.
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F16. 7.—Velocity and pressure along axes and over surface of endless elliptic eylinder. Graphs indicate theoretical values;
circles indicate pressure measured at 40 n.iles per hour in 8-foot wind tunael, United States Navy
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F16. 8.— Pressure and pressure-drag on endless elliptic cylinder. Graphs indicate theoretical values; circles
indicate pressure p/pa measured at 40 miles per hour; crosses indicate pressure-drag D/p« computed from
measured pressure

Whatever the value of a/b, the whole pressure on the front half is negative or upstream,
as for the sphere and round cylinder, and is balanced by the rear drag. For b fixed it decreases
indefinitely with b/a.
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The crosses marking actual values of D/p, found in said test show a downstream resultant
D. In fact, it is one-third the whole measured drag of pressure plus friction, or one-half the
friction drag.

For the cylinder held broadside on, & >a and a*—b*= —¢%, hence changing ¢? to —¢* under
the integral sign of (15), we find
_ a+b ,(a+b)? b2+ ey
D/pn_ 4b 2 b CS logt/ﬁ*C‘)j’ (16)

where now ¢*=0*—a®.  With b fixed, the upstream pressure drag on the front half increases with
b/a, becoming infinite for a thin flat plate. It is balanced by a symmetrical drag back of the

plate.
Such infinite forces imply infinite pressure change at the edges where, as is well known, the

velocity can be ¢ = \'2p,/p = o, in & perfect liquid whose reservoir pressure is p, = . Otherwise
viewed, the pressure is p, at the plate’s center (front and back) and decreases indefinitely toward
the edges, thus exerting an infinite upstream push on the back and a symmetrical downstream
push on the front. In natural fluids no such condition can exist.

THE PROLATE SPHEROID

A prolate spheroid, fixed as in Table I, gives for points on z, ¥ and the solid surface, respec-
tively, the flow speeds
91=(1“n)901 qv:(1+m)QO- (]z=(1+k’a) Qo sin g, (16)

=
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Fi6. 9.—Velocity and pressure along axes and over surface of prolate spheroid, Graphs indicate theoretical values; circles
indicute pressures measured at 40 miles per hour in 8-foot wind tunnel, United States Navy; dots give pressures found
wilh an equal model in British test, R. and M. No. 600, British Advisory Committee for Aeronautics
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Fic. 10.—Pressure and pressure-drag on prolate spheroid. Graphs indicate theoretical values; dots indicate
meuasured pressure p/pa from Figure 9; crosses indicate pressure-drag L/p » computed frony measured pressure
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where k, is to be taken from Table IT.  Graphs of (16) are given in Figure 9, for a model having
a/b=4, viz., k,=0.082.

For this surface p/p. plots as in Figure 10. For a 2 by 8 inch brass model values of p/p.
are shown by cireles for a test at 40 miles an hour in the United States Navy tunnel; by dots for
a like test in a British tunnel. (Reference 2.)

By (16), for points on the surface p/p.=1 — gt =1— (1 +ky)? sin* 4. From this, since
sin? 0=a%? (b*+c*y?), the zonal pressure drag /" p. 2 7y dy is found. Thus

2 254 4 2,42
Dipamryt= "0 ke T ko, Y an

Starting from y=0, D/p, increases to its maximum when p=0, or sin 8§=1/(1+k,); then
diminishes to its minimum for y="%. Figure 10 gives the theoretical and empirical graphs of
D/p, for a/b=4.

For b fixed the upstream drag on the front half decreases indefinitely with b/a, becoming
zero for infinite elongation.

OBLATE SPHEROID

The flow velocity about an oblate spheroid with its polar axis along stream is given by
formulas in Table I, and plotted in Figure 11, together with computed values of p/p.. No
determinations of p or I were made for an actual flow. The formula for D/p, is like (17),
exeept that ¢ =b*—a?, and k, is larger for the oblate spheroid, as seen in Table II.  For b fixed
the upstream drag on the front half increases indefinitely with b/a.

¥, 11.—Theoretical velocity =il prossure ulong x uxis of oblate spheroid. Diameter/thickness=4
CIRCULAR DISK

The theoretical flow speeds and superpressures for points on the axis of a circular disk fixed
normal to a uniform stream of inviscid liquid are plotted in Figure 12, without comparative
data from a test. One notes that the formulas are those for an oblate spheroid with eccen-
tricity e=1.

For 1500<q, afv < 500000, Wieselsberger (Reference 3) finds for the air drag of a thin

normal disk, of area S,
D=1.1p.8, (18)

or 2.2 times that for a sphere. For ag,/v extremely small, theory gives
D=517paq, (19)

asis well known. Test data for a complete graph, including these extremes, are not yet available.

Fi;. 12. =T heoretieal pressure and velocity along axis of disk
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REGIONS OF EQUAL SPEED
In the flow field ¢, p are constant where g +¢.’ = constant, viz. where
¢/’ = (1+m)*? sin*6+ (1~ n)? cos’d = const. (20)
In particular for the region ¢ =g, this becomes

n2-n_a
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F1G. 13.—Inertia coefficient vs. elongntion. Plotted from Table 11

which applies to all the quadrics in Table I. Clearly tan 6=0 for n=2; tan*¥=n/m for
m, n=0, viz. for all distant points of (21). For these points the normal to any confocal ellipse
lies along the radius vector and asymptote of (21), as seen in Figures 14 to 17.
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FiG. 14.—Lines of steady flow, lines of constant speed and pressure, for
infinite [rictionless liquid streaming past a sphere

For the sphere n=2m=a?/r*; hence (21) becomes

2r—a®
20=92-"_" 29
tan’d 22’_3__'5‘13 (22

where r=a’ = yz?+3%. The form of this is depicted in Figure 14.

* tan 8=y/z is the slope of a radial line through the point (z, y) where (21) cuts a confocal curve a’d’, of Table I. Knowing a’, ¥, 8, to locate

(1, y) draw across the radial line an arc of a’b’ by sliding along the 7, y axes a straightedge subdivided as in the ellipsograph, The operation is rapid
and easy.
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For a round cylinder n=m=a’/r?; hence

2r?—a?
29 __ _ -2 D)
tan?d 974 g1 O 2r’=a? sec 26, (23)
which is the section of a hyperbolic cylinder, as in Figure 15.
y
\. G/q,=1-005

q/q,=1 // 9/9,71

q/q,=.995 Q/q,= 995

N

Fii. 15.—Lines of steady flow, lines of constant speed and pressure, for infinite frictionless liquid streaming across endless
round cylinder

FiG. 16.—Lines of steady flow, lines of constant speed and pressure, for infinite [rictionless liquid
streaming across endless elliptic eylinder
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A plot of (21) for an elliptic cylinder, fixed as shown in Table I, is given in Figure 16; for a
prolate spheroid in Figure 17,

Besides the region (21), having g =q¢,, it is useful to know the limit of perceptible disturbance
say where ¢*/¢,°=1+.01. This in (20) gives

(1+m)*sin? 8+ (1—n)2cos? =14 .01, (24)
which applies to all the quadrics here studied. Hence

n2-n 0.01
&+

2. _ o
tan®6 m2+m- m2+m)cos?o

(28)

A graph of (25) for a round cylinder is shown in Figure 15. Like plots for the other quadrics

FI6. 17.—Li.cs ul stealy Low, liues of constagt speed and pressure, for infinite [rietion-
less liquid streaming past a prolate spheroid. Full-line curve g=g. refers to stream
parallel to z; dotted curve ¢=g, refers to stream inclived 10° to z

If in (20) a series of constants be written for the right member, the graphs compose a family
of lines of equal velocity and pressure, covering the entire flow field, Rotating Figures 14, 17
about z gives surfaces of g=g,.

COMPARISON OF SPEEDS

Before all the fixed models the flow speed is g, at a great distance and 0 at the nose; abreast
of them it is ¢, at a distance, and (1 +k.)q, amidships.

The flux of ¢—¢, through the equatorial plane obviously must equal ¢,8 where S is the
body’s frontal area. Hence two bodies having equal equators have the same flux ¢,S, and the
same average superspeed or average ¢—g¢,. But the longer one has the lesser midship speed;
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SYMBOLS USED IN TEXT

T, Yooommm - Cartesian coordinates; also axes of same.

B Polar coordinates.

P R, Angle of attack of uniform stream.

[ Length of arc, increasing with 8.

[ 2 Inclination to z of normal to confocal
curves in Table I.

@ e Velocity function.

Wememeeeae Stream function.

[, D, Resultant velocity at any point of fluid.

Qoooommmen Velocity of distant fltuid (parallel to =z
axis).

Qzs Qu--—-- Velocity at points on z and y axes (parallel
to z axis).

g¢ ------- Velocity along confocal surface or model
surface.

" S Velocity normal to confocal surface.

Poomeeeee Density of fluid.

oo ooeeeem Viscosity.

Kinematic viscosity.

Prcceeccnn Nose pressure=p ¢,?/2.
Pooomoeone Pressure in distant fluid.
R Superstream pressure anywhere.
D____.__. Zonal pressure drag=J/ p dy dz.
Do Whole drag.

S ... Frontal area of model.

Cp. . --_ Drag coefficient=D'p.S.
R__._.___. Reynolds number.

[ Radius of sphere, cylinder.

a, b _____ Semiaxes of ellipse.

a’, b’..____ Semiaxes of confocal ellipse.

€ oo Eccentricity of ellipse.

e .. Eccentricity of confocal ellipse.
Coemmmee e Focal distance=ae—a'¢e' =a>—b?
Kae oo an Inertia factor (Table II).

m, n, m.... Quantities defined in Tables I, II.
Colatitude (see equation 30).

TABLE 1

Flow functions for simple quadrics fixed in a uniform stream of speed ¢

| Symbol defini-

tions Form of quadric

I Value of functions at any confocal surfaces of semiaxes a’, b’

Velocity function ¢

. along z positive

[

I ' v
Stream function ¥ i Component velocities

g4 Gn :
o= —(1+m) gz, where , _ 1 Differentiation along
( e v=—p (1-nm)qa*, wherel " arc s of either figure
Sphere at | ad gigestziz
Mm=s.7 i n= i ¢
2a a = =(14m
See diagram A 9 0z ds '( +m) g
(fig. 20) - B - ) sin 8, valid for all the -
1 o= —(14m) q.z, v=—(1—n)q.y, figures;
¥ »d"!=—-(l—n)
Circular cylinder a a? In=3y ds 9o
m=_n R=gn cos 6, for the cylin-
\ ders;o
- N e 10¢d
et % i)
e=—(14+m) .1, y=—(1-n)qu, y °y

‘ Elliptic eylinder

go cos 0, for the axial .

b atb b a+b . surfaces; viz., sphere, !
‘ i m= n=yi gy ! spheroids, disk.
o’ o'+ a | For a’, b'=a, b, Table '

|

“,7, -
See diagram B l
\

P (fig. 20) o=—{1+m)qa,
Prolate spheroid ’
| s fog. i —te}
e—a‘/a — b m=—— - - €
: 1+e
log. 12e”

| |
| Oblate spheroid |
i 1 i
| ‘ €=y \/bz —at |

Sec diagram C ‘
| (fig. 20) i

Lt
—sin
al

1
|
‘ Circular disk |
! a=0,e=1 o2

L

@

x

¢, ¥, in elliptic coordinates, can be found in textbooks

o p=—(1+m)q.r,

¢=—(1+m)q.z,

iy — ’
,—sin—1le

1I gives m,; whence
q.=(1+m,) g, sin 8,
as the flow velocity ona .
fixed quadric surface.
g.= £ 0 for disk. since

1
y=—5 (1) q0y*,

—2g! 14-¢  2¢ n=1
. 10g: y _ iy —en Remark—both ¢, ga
2 | m= - [, T9a  can be derived from
1—e? 10ge ; .71 —¢ either ¢ ot ¥'. :
| If g, gn=maX. g1, ¢n
— - on a’b’, at any other |

! 1 point thereof !
‘p=—2'(l-n)q,,y’, gi=gq. 8in 0, ga=¢a |

‘ cos f
—_ )
€ ¢ —_in =1’
; By —Ein e
1 | P e’
e i P
: b —sin “le

1
== (1=m) q?,

' i
) n= —% (‘Z,l:—sin "e’>‘

;e g, §§ 71,105,108, Lamb’s Hydrodynamics, 4th Ed.
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hence its outboard speed wanes less rapidly with distance along y. A like relation obtains
along z from the nose forward. These relations are shown in the velocity graphs of Figures
18 and 19. A figure similar to 18, including many models, is given in Reference 4.

FiG. 18.—Superposed graphs of flow speed abreast of endless round and elliptic
cylinders of same thickoess flxed transverse tu gn infinite stream of inviscid
liquid. At great distance fiow speed i3 ¢,

F1G. 19.—Buperposed graphs of axial flow speed before three endless cylinders 1, 2, and 3 (3 osculating
2}, each fixed transverse to an infinite stream of inviseid liquid. At great distance flow speed is g,

COMPARISON OF PRESSURES

The foregoing speed relations determine those of the pressures. The nose pressures all
are p,=pq*2; the midship ones are p=p,— (1+%,)?p,. The drag on the front half of the
model is upstream for all the quadrics here treated; it increases with the flatness, as one proves
by (15), (17), and is infinite for the normal disk and rectangle.

APPLICATION OF FORMULAS

The ready equations here given, aside from their academic interest in predicting natural
phenomena from pure theory, are found useful in the design of air and water craft. The formula
for nose pressure long has been used. That for pressure on a prolate spheroid, of form suitable
for an airship bow, is so trustworthy as to obviate the need for pressure-distribution measure-
ments on such shapes. The same may be said of the fore part of well-formed torpedoes deeply
submerged. The computations for stiffening the fore part of airship hulls can be safely based
on theoretical estimates of the local pressures. The velocity change, well away from the
model, especially forward of the equatorial plane, can be found more accurately by theory
than by experiment. The equation (21) of undisturbed speed shows where to place anemometers
to indicate, with least correction, the relative speed of model and general stream.

REFERENCES

1. WIESELSBERGER, C.: Physicalische Zeitschrift, vol. 22. 1921.
2. Joves, R., and WirLtams, D. H.: The distribution of pressure over the surface of airship model U. 721,

together with a comparison with the pressure over a spheroid. Brit. Adv. Com. for Aeron. Reports and
Memoranda No. 600. 1919.

3. WieseELsBeRGER, C.: Physicalische Zeitschrift, vol. 23. 1922,
4. Tayror, D. W.: Speed and Power of Ships, gives a figure similar to 18 but including more models. 1910.
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TABLE 1II

Inertia factors ko* for quadric surfaces in steady translation along axis ¢ in Figure 20

j Prolate spheroid E=q/b

1 Elliptic eylinder, E=a/b 1+e | Oblate spheroid E=b/a

| Elonga- b log. —2e ! ) -

| ‘tion £ =t b 1—e ™ i k. ___7EV—E sin7le
“Ta ° Jog. 1+e 2e e—E sin"le

1—e 1—¢

P00 1. 000 0. 500 0. 500
L1050 . 667 : . 305 . 803

2. 00 . 500 . 209 1. 118
P2.50 . 400 . 157 1. 428
L300 . 333 121 1. 742
L4000 . 250 . 082 2. 379
o500 . 200 . 059 3. 000
[ 6.00 | . 167 . 045 3. 642
700 | 143 . 036 4.279

800 ° 125 . 029 4.915
900 L1111 . 024 5. 549
| 10,00 | . 100 . 021 6. 183
‘ © . 000 . 000 o

*In this table k.-m. of Table I, viz, the value of m when a’, b'—a 4. Lamb (R.and M. No. 623, Brlt Adv. Com. Aeron.) gives the numerical
values in the third column above. ' For motiun of clliptic cylmdcr alnng b axis inertia factor is ks =a/fb.

Oragram A y Diograom 8 y Diogrom C Yy

rerf
v

9 g a'a
Fia. 20

VELOCITY AND PRESSURE IN OBLIQUE FLOW3?
PRINCIPLE OF VELOCITY COMPOSITION

A stream ¢, oblique to a model can be resolved in chosen directions into component streams
each having its individual velocity at any flow point, as in Figure 21. Combining the individuals
gives their resultant, whence p is found.

VELOCITY FUNCTION

Let a uniform infinite stream ¢, of inviscid liquid flowing past a fixed ellipsoid centered
at the origin have components U, V, W along z, y, 2, taken parallel, respectively, to the semi-
axes, 4, b, ¢; then we find the velocity potential ¢ for g, as the sum of the potentials Cay €1y Fo
for U, V, W.

In the present notation textbooks prove, for any point (x, y, z) on the confocal ellipsoid
a b,

‘Paz'_(1+ma) Uz, (26)
and give as constant for that surface

0 *
m,,=abc(1—abcf ~r 2 b; ) f YN br s (27)

the multiplier of [ being constant for the model, and A=a’ 2>—a?. Adding to (26) analogous
I

values of ¢,, ¢, gives
e=—(14+m) Uz~ Q+m)Vy— (1+m)We=— (1+m)q,,h, (28)

2 This brief treatment of oblique flow was added by request after the preceding text was ﬂmshed
* Simple formulas for this integral and the corresponding b, ¢ ones, published by Qreene, R. S. Ed. 1833, are given by Doctor Tuckerman in
Report No. 210 of the National Advisory Committee for Aeronautics for 1925. Some ready values are listed in Tables 111, IV.
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where % is the distance of (z, ¥, 2) from the plane ¢ =0, and m,, m,, m,, m are generalized inertia
coefficients of @’ ' ¢’ for the respective streams U, V, W, g,. For the model itself the inertia
coelficients usually are written kq, k,, k., k. The direction cosines of h are

I+m, U 14me V., 14m, W

L=%m o U 1Fmg’ VT 14m_g’

(29)

as appears on dividing (28) by (1+m)gq, the resultant of, (1 +m,) U, (1+m,) V,1+m)W.
EQUIPOTENTIALS AND STREAMLINES

On a’ b’ ¢ the plane sections ¢ = constant are equipotential ellipses parallel to the major
section ¢ =0, and dwindling fore and aft to mere points, whichiwe call stream poles, where the
plane (28) is tangent to ¢’ b’ ¢’. If ¢ is the angle between any normal to @’ b’ ¢’ and the polar

v
\

TV

F16. 21.—Superposition of streamline velocities for component plane flows parallel
to axes of elliptic cylinder

normal, whose direction cosines are L, M, N, we call the line ¢= const. a line of stream latitude.
Thus € is the colatitude or obliquity of a surface element of a’ b' ¢’. The line ¢=90° is the stream
equator. This latter marks the contact of a tangent cylinder parallel to the polar normal, viz,
perpendicular to the plane (28), as in Figure 22. If, m, n are the direction cosines of any normal
to a’ b ¢

cos e=I[L+mM-+nN. (30)

Since the streamlines all cut the equipotentials squarely,’ the polar streamline must run
continuously normal to the family of confocal ellipsoids @’ b’ ¢’. Hence it forms the intersec-
tion of a pair of confocal hyperboloids, and at infinity asymptotes a line parallel to g, through the
origin. This straight line may be called the stream axis. Itsequationisz:y:z= U:V: W

1 On the model, therefore, the streamlines are longitude lines, viz. orthogonals to the latitude lines.



FLOW AND DRAG FORMULAS FOR SIMPLE QUADRICS
COMPONENT VELOCITIES

At any point of any confocal surface a’ 3’ ¢’ the streamline velocity ¢, perpendicular to the
equipotential ellipse there, has components ¢., ¢, respectively, along the surface normal n
and the tangent s in the plane of ¢ and n. By (28) we have

dr - .
q,=g’f ds = desin e (B1)

where — d¢/0k = (14 m)q/=q,=max. g, is the equatorial velocity. By (26) the inward normal

velocity due to ¢, is

~2 @4 m Te= ~11 =) T, 32)
n, being constant on @’ b’ ¢/, as may be shown. Similarly, ¢s, ¢. contribute —m(1—n,)V,—n
(1—n.) W; hence the whole normal component is

ga=—11—n) U—m(1—n)V—n(l-n) W=, cose, (33)

where ¢,={(1— 7,20+ (1 —n,)*V*+ (1—n,)? W25 =max. ¢, is the normal velocity at the stream
poles. Some values of n,, n, are given in Tables I, III. One also may find (33) as the normal
derivative of (28).

We now state (28): At any point of @’ b’ ¢’ the velocity potential equals gk, the equatorial
speed times the distance from the plane of zero potential. Similarly (31) (33) state: At any
pointofa’ b’ ¢’ the tangential speed (¢ sin €) equals the equatorial speed times the sine of the
obliquity; the normal speed (¢, cos ¢€) equals the polar speed times the cosine of the obliquity.
This theorem applies to all the confocals, even at the model where ¢.=01

Incidentally the normal flux through a’ b’ ¢’ is S'acose-dS =1y, JSd8,, where S, is the pro-
jection of S on the plane of ¢=const. and equals the cross section of the tangent cylinder.
The whole flux through a’ b’ ¢’ is therefore zero, as should be.

POLAR STREAMLINE

Some of the foregoing relations are portrayed in Figure 22 for a case of plane flow. Note-
worthy is the polar streamline or hyperbola. Starting at infinity parallel to g, the polar fila-
ment runs with waning speed normally through the front poles of the successive confocal sur-
faces; abuts on the model at its front pole, or stop point; spreads round to the rear pole; then
accelerates downstream symmetric with its upstream part. Its equation ¢, =0=0¢/0s can be
written from (28)

. 1+my V*
g =(1+mg) U sin 86— (1+mp)V cos §=0, or tan 6= l+m, T (34)
This asymptotes the stream axis y/e= V/U; for at infinity mq, m,=0, and tan §=V/U. Plane-
flow values of m,, m, are given in Tables I, IIL
All the confocal poles are given by (34); those of the model are at the stops where

14k V_aly

b=, U b

Thus on an elliptic eylinder they are where yj/z=05%/e’. V/U; on a thin lamina they are at
£=4c cos a, as given in the footnote. Tables IT, IV give values of ko, ks

37

+ An analogous theorem obtains alse for any other uniform steady stream, say of heat or electricity, that has zero normal component at the bound -
ary ellipsoid and zero concentration in the flow field.
* To graph (34) we may use the known relations. , ,
e’y a
tan 6=, 2= lan a, (35)

where tan a = ¥/ U is the slope of go or the asymptote 1o (34). Thus (34) becomes a’fd'=(14+my)/(14+m.), which with the tabulated values of
e, Ms, reduces Lo

v 36
cteosla cfsinfa L 36)
a hyperbola whose semiaxes are c cos a, ¢ Sin a, ¢ being the focal distance. In this treatment z=a’ cos a, y=b sin a, « being a fixed eccentric
angle of the successive confocal elipses.
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Each angle of attack has its own flow pattern; each its polar streamline given by (34).
A close-graded family of confocal ellipses and hyperbolas therefore portrays all the poles and
polar streamlines in the plane ab for all angles of attack. The family can be written

r=a’ cos qa, y="¥"sin a. (38)

Thus, giving a’, b’ a set of fixed values, then « a set, we have the confocal families

2 xZ yz

x2
a2yl o Fsinfa (39)
the first being ellipses, the second hyperbolas like (36) below.
Similarly, the locus ¢.=0, or ¢=gq,, is written from (33). With W=0,
1-n, U
tan 6= "1_1;; V‘ (40)

Its discussion is of minor interest.
DRAG AND MOMENT

Formulas for the pressure p all over the simple quadrics here treated are well known, for
oblique as well as axial flow, and serve to find the drag and moment. For uniform flow the
resultant drag is zero; its zonal parts can be found as heretofore. The moment about z is the
surface integral of p(y dy dz—x dz d2), and generally is net zero.

REGIONS OF EQUAL SPEED ABOUT OBLIQUE MODELS

Compounding the velocities (31), (33) at any point in the ab plane, as in Figure 22, gives
for ¢ constant

¢=[(1+m,)Usin 8—(1+m,)V cos 8P+ [(1—n,) U cos 6+ (1—n,) V sin §*=const. (41)
In particular for ¢*= U7+ V? (41) gives
tan o=%(A + JBC+A2)=g:: tan 8. (42)
where K=V/U, and
A=(1+mq) (L+my)— (l—n,,)(l—nb),B=m,,(2+ma)—n,(2—n,)K",CD=n“(2K_2n“)—mb(2+m,).

F15. 22.— Polar streamline and component velocities for uniform stream of inviscid liquid about oblique
elliptic eylinder

For an elliptic cylinder, as is well known.
b a+b _ b oa+d _a a+b _a a+b
Tow+b’ T e+d’ TR T e+
which determines A, B, C, and thence 8 in terms of @’ b’. Thus, for an endless elliptic cylinder
of semiaxes a =4, b=1, yawed 10° to the stream, i. e., V/U =tan 10°=.1763, the graph of (42)
has the form shown full line in Figure 23. This graph takes the dotted form when V=0,¢,=U.

Ma
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For a prolate spheriod of semiaxes a=4, b=1, yawed 10°, the graph of (42) is shown in
Ficure 17.

%
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/"
F1G. 23.—Lines of steady flow, lines of constant speed and pressure, for infinite frictionless liquid

streaming across endless elliptic cylinder. Dotted curve refers to stream parallel to z ; full-line
curve g =g, refers to stream inclined 10° to z

The two values of tan 8 in (42) are

tan g8,= g(A ++/BC+ A%), tan B;= %(A —JBC+ AY), (43)
from which are readily derived .
BC+A? 2KA
tan (51_52)=2'1’%/';70{20”” tan (8 +52)=B-_'jfz" (44)

(43) give the z-ward inclinations 8,, 8, of the asymptotes of the curves g=g¢,. As can be
proved, the interasymptote angle 8, — 8; remains constant as K(= V/U) varies and the asymp-
totes rotate through 14(8, + 8,) about the ¢ axis.

Thus, with an elliptic cylinder, giving A, B, C their values at = makes

tan ===, tan (B+p)=e D), (45)

hence the asymptotes continue rectangular, as in Figure 23, while with varying angle of attack
d
they rotate through 14(8,+8;). Or more generally one may show that da (Bi—B2)=0..8,— =

const.

A similar treatment applies to the other figures of Table III. For all the cylinders the
interasymptote angle is 90°; for the spheroids it is 2tan™+2=109°—28" in the ab plane.
Figure 17 is an example. If the flow past the spheroids is parallel to the bec plane the inter-
asymptote angle for the curves ¢=g, in that plane is obviously unaffected by stream direction.
It is 90° for infinitely elongated spheroids; 109° —28’ for all others. Excluded from the gen-
eralizations of this paragraph are the infinitely thin figures, such as disks and rectangles edge-
wise to the stream, that cause no disturbance of the flow. Passing to three dimensions, we
note that the asymptotic lines form asymptotic cones having their vertex at the origin.

42488 —27——35
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SUMMARY

For an infinite inviscid liquid streaming uniformly, in any direction, past an ellipsoid or
simple quadric:

1. The velocity potential at any confocal surface point equals the greatest tangential
speed along that surface times the distance from the point to the surface’s zero-potential plane.

2. The tangential flow speed at said surface point equals the greatest tangential speed
times the sine of the obliquity, or inclination of the local surface element to the equipotential
plane.

3. The normal speed at the point equals the greatest normal speed times the cosine of the
obliquity.

4. The locus of g=g, is a cup-shaped surface asymptoting a double cone with vertex at
the center.

5. The vertex angle of this cone is invariant with stream direction; for cylinders it is
90°, for spheroids it is 2tan™+y/2 =109° — 28,

6. The velocity and pressure distribution are closely the same as for air of the same
density, except in or near the region of disturbed flow.

7. The zonal drag is upstream on the fore half; downstream on the rear half; zero on the
whole. These zones may be bounded by the isobars, € const.

For the same stream, but with kinematic viscosity v, if the dynamic scale is B =g,d/v,
d being the model’s diameter:

8. The drag coefficient of a sphere is 24/R for R<(.2; 288 %+ .48 for 0.2<CR<200,000;
and 0.5 for 10*<<R<10°.

9. The drag coefficient of an endless round cylinder fixed across stream is 8x/R(2.002—
log.R) for R<(.5; approximately 9.4 R-*+1.2 for 0.5<{R<200,000; 1.2 for 10*<R<200,000.

10. For 15,000<R£<(200,000 the drag coeflicient of a round cylinder is 2.4 times that for
a sphere.
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TABLE III

Flow funetions for simple quadrics in stream V along y positive

(For all shapes ¢= —(14+m,) Vy,

ge=(1+m;) V sin *

Shape e
ad
Sphere ag't
2
‘ Circular cylinder :«z
|
I — _ _
— I
| Ly
Elliptic cylinder ZI a(’l-:{ib’
1+¢ 2¢’
Prolate spheroid log. l—e “T—on
1, o t—€e lTer
e= " ar— 1+e , 1—2¢
@ Iog,l__e 2e 1—e?

Oblate spheroid

e:b\,’bz»az

¢ \V1—e?—sin~le’
1+ -
e, ——— —sin’le
Vi—e?

gn=—(1—n) Vcose)

h
at
a’
aﬂ
a’?
a a+b
al al+bl
1+¢ 1—2¢"
log, —2¢'
) S I—e
1+4e 1—2¢
log, — 2¢ 7 =
8 I1—e “1Ze
r2
e ‘1+e —sin~le’
V1—¢'?
2
[ ;+c —sin7le
_V‘l_e.f

* ¢ is the angle betwveen b’ and any normal to the confoeal surface.

TABLE IV

Inertia factors k, for quadric surfaces in steady translation along axis b in Figure 20

The numerical values in column 3 are given in Lamb’s paper already ciled; those in column 4 are given
substantially by Doctor Bateman, Report No. 163 National Advisory Committee for Aeronautics, 1923.

! Prol. spher. E:a/lé
1l ¥ = 1+e e
Elong&- Elllp.]:’yl aE afb . log, lme " 1—e
tion b= = s e
b T+e , 1—2¢
lOg'l—e 2 1—e?
1. 00 1. 00 0. 500
L 50 1. 50 ‘ . 621
2. 00 2. 00 L1702
2. 50 2. 50 i . 763
3. 00 3. 00 . 803
4. 00 4. 00 . 860
5. 00 5. 00 . 895
6. 00 6. 00 . 918
7. 00 7. 00 . 933
8. 00 8. 00 . 045
9. 00 9. 00 . 954
10. 00 10. 00 . 960
«© @ 1. 000

Obl. spher. E=b/a
kpm - €T Esin"le
eE e+ 1)—E sinle

. 075
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